Vertex algebra associated to abelian current Lie algebras

Jinwei Yang University of Notre Dame

Lie algebra, vertex algebra and related topics Conference in honor of J. Lepowsky and R. Wilson Aug 15, 2015

A conformal vertex algebra is a \mathbb{Z} -graded vector space

$$V = \coprod_{n \in \mathbb{Z}} V_{(n)}$$

equipped with a linear map

$$\begin{array}{rcl} Y(\cdot,x): V & \to & \operatorname{Hom}(V,V((x))) \\ v & \mapsto & Y(v,x) = \sum_{n \in \mathbb{Z}} v_n x^{-n-1} \ (\text{where } v_n \in \operatorname{End} V) \end{array}$$

and equipped with two distinguished vectors $1 \in V_{(0)}$, called vacuum vector, such that for $v \in V$, the following axioms hold:

$$\bigcirc Y(1,x) = \mathrm{id}_V$$

2
$$Y(v,x)1 \in V[[x]]$$
, and $Y(v,x)1|_{x=0} = v_{-1}1 = v$;

・聞き ・ヨキ ・ヨト

Definition of vertex algebras (continued)

and $\omega \in V_{(2)}$, called conformal vector, such that the following properties hold:

The Virasoro algebra relations

$$[L(m), L(n)] = (m-n)L(m+n) + \frac{m^3 - m}{12}\delta_{m+n,0}c_V,$$

where $L(n) = \omega_{n+1}$, and $c_v \in \mathbb{C}$, called rank of V.

2
$$Y(L(-1)v, x) = \frac{d}{dx}Y(v, x)$$
, for $v \in V$.

③ *L*(0)*v* = *nv*, for *v* ∈
$$V_{(n)}$$
.

and for $u, v \in V$, the Jacobi identity (the main axiom) holds:

$$x_0^{-1}\delta(\frac{x_1-x_2}{x_0})Y(u,x_1)Y(v,x_2) - x_0^{-1}\delta(\frac{x_2-x_1}{-x_0})Y(v,x_2)Y(u,x_1)$$

= $x_0^{-1}\delta(\frac{x_1-x_0}{-x_0})Y(Y(u,x_2)v,x_2)$

$$= x_2^{-1} \delta(\frac{x_1 - x_0}{x_2}) Y(Y(u, x_0)v, x_2),$$

where $\delta(x) = \sum_{n \in \mathbb{Z}} x^n$.

・ 回 ト ・ ヨ ト ・ ヨ ト

Definition

A vertex operator algebra is a conformal vertex algebra

$$V = \coprod_{n \in \mathbb{Z}} V_{(n)}$$

such that

dim
$$V_{(n)} < \infty$$
 for $n \in \mathbb{Z}$,

 $V_{(n)} = 0$ for *n* sufficiently negative

(grading restriction property).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Definition

Let A be an abelian group. A conformal vertex algebra

 $V = \coprod_{n \in \mathbb{Z}} V_{(n)}$

is said to be strongly graded with respect to *A* (or strongly *A*-graded) if it is equipped with a second grading by *A*,

$$V = \coprod_{\alpha \in \mathcal{A}} V^{(\alpha)},$$

such that the grading restriction conditions hold:

イロト イポト イヨト イヨト

ъ

Examples: Vertex algebras associated with even lattices

Let *L* be an even lattice not necessarily positive definite. Let $\mathfrak{h} = L \otimes_{\mathbb{Z}} \mathbb{C}$. Then we form a Heisenberg algebra

$$\widehat{\mathfrak{h}}_{\mathbb{Z}} = \coprod_{n \in \mathbb{Z}, \ n \neq 0} \mathfrak{h} \otimes t^n \oplus \mathbb{C}c.$$

Let $(\widehat{L}, \overline{})$ be a central extension of *L* by a finite cyclic group $\langle \kappa | \kappa^s = 1 \rangle$. Let $C\{L\}$ be a certain induced \widehat{L} -module isomorphic to $\mathbb{C}[L]$. Then

$$V_L = S(\widehat{\mathfrak{h}}_{\mathbb{Z}}^-) \otimes \mathbb{C}\{L\}$$

has a natural structure of conformal vertex algebra. For $\alpha \in L$, choose an $a \in \hat{L}$ such that $\bar{a} = \alpha$. Define $\iota(a) = a \otimes 1 \in \mathbb{C}\{L\}$ and

$$V_L^{(\alpha)} = S(\widehat{\mathfrak{h}}_{\mathbb{Z}}^-) \otimes \mathbb{C}\iota(a).$$

Then V_L is equipped with a natural second grading given by L itself.

Strongly graded modules for strongly graded vertex algebras

Definition

Let \tilde{A} be an abelian group containing A. A *V*-module $W = \prod_{n \in \mathbb{C}} W_{(n)}$ is said to be strongly graded with respect to \tilde{A} (or strongly \tilde{A} -graded) if it is equipped with a second grading by \tilde{A} ,

$$W = \coprod_{eta \in ilde{\mathcal{A}}} W^{(eta)}$$

such that the grading restriction conditions hold:

・ 同 ト ・ ヨ ト ・ ヨ ト

Jinwei Yang Vertex algebra associated to abelian current Lie algebras

ヘロン 人間 とくほど くほとう

э

In a series of papers [HLZ1]-[HLZ8], Huang, Lepowsky and Zhang developed the theory of logarithmic tensor categories for logarithmic modules for strongly graded vertex algebras.

ヘロト ヘアト ヘビト ヘビト

1

- In a series of papers [HLZ1]-[HLZ8], Huang, Lepowsky and Zhang developed the theory of logarithmic tensor categories for logarithmic modules for strongly graded vertex algebras.
- So far, the only source of strongly graded vertex algebras and their modules comes from V_L , where *L* is an even lattice.

ヘロン 人間 とくほ とくほ とう

э.

- In a series of papers [HLZ1]-[HLZ8], Huang, Lepowsky and Zhang developed the theory of logarithmic tensor categories for logarithmic modules for strongly graded vertex algebras.
- So far, the only source of strongly graded vertex algebras and their modules comes from V_L , where *L* is an even lattice.
- We construct a new family of strongly graded vertex algebras along with a natural logarithmic module category.

ヘロン 人間 とくほ とくほ とう

- In a series of papers [HLZ1]-[HLZ8], Huang, Lepowsky and Zhang developed the theory of logarithmic tensor categories for logarithmic modules for strongly graded vertex algebras.
- So far, the only source of strongly graded vertex algebras and their modules comes from V_L , where *L* is an even lattice.
- We construct a new family of strongly graded vertex algebras along with a natural logarithmic module category.
- We show some properties needed in Huang-Lepowsky-Zhang's logaritmic tensor category theory and expect that there is a natural logarithmic tensor category structure on the module category.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Current algebra of a finite dimensional Lie algebra has been studied in [CG1], [CG2] et al. Current Lie algebra is the standard parabolic subalgebra of an affine Lie algebra and its representation has broad applications.

Definition

Let $\mathbb{C}[t]$ be the ring of polynomials in an indeterminate *t*. The current algebra $\mathfrak{g}[t]$ of a Lie algebra \mathfrak{g} is the Lie algebra $\mathfrak{g} \otimes \mathbb{C}[t]$, where the Lie bracket is defined by

$$[x \otimes f, y \otimes g]_{\mathfrak{g}[t]} = [x, y]_{\mathfrak{g}} \otimes fg, \quad x, y \in \mathfrak{g}, \quad f, g \in \mathbb{C}[t].$$

ヘロト ヘアト ヘヨト ヘ

Jinwei Yang Vertex algebra associated to abelian current Lie algebras

< 回 > < 回 > < 回 >

Ourrent Lie algebra h[t] = h ⊗ C[t] is an abelian Lie algebra.

くロト (過) (目) (日)

- Ourrent Lie algebra h[t] = h ⊗ C[t] is an abelian Lie algebra.
- **2** $\mathfrak{h}[t]$ has an invariant symmetric bilinear form induced from $\langle \cdot, \cdot \rangle_{\mathfrak{h}}$:

$$\langle xt^m, yt^n \rangle_{\mathfrak{h}[t]} = \delta_{m,n} \langle x, y \rangle_{\mathfrak{h}}, \quad x, y \in \mathfrak{h}, \quad m, n \in \mathbb{N}.$$

ヘロト ヘアト ヘビト ヘビト

- Ourrent Lie algebra h[t] = h ⊗ C[t] is an abelian Lie algebra.
- h[t] has an invariant symmetric bilinear form induced from

 (·, ·)_b:

$$\langle xt^m, yt^n \rangle_{\mathfrak{h}[t]} = \delta_{m,n} \langle x, y \rangle_{\mathfrak{h}}, \quad x, y \in \mathfrak{h}, \ m, n \in \mathbb{N}.$$

Sor every λ ∈ h, denote by C_λ the one-dimensional h-module with h ∈ h acting as the scalar ⟨λ, h⟩_h. For every a ∈ C we define an h[t]-module V(λ, a) = C_λ as a vector space with action given by

$$(hf) \cdot v = f(a)\lambda(h)v, \quad h \in \mathfrak{h}, \ f \in \mathbb{C}[t], \ v \in \mathbb{C}_{\lambda}.$$

イロト 不得 とくほ とくほ とう

Jinwei Yang Vertex algebra associated to abelian current Lie algebras

個 とくき とくきょ

• Affinize $\mathfrak{h}[t]$ as follows:

$$\widehat{\mathfrak{h}[t]} = \mathfrak{h}[t] \otimes \mathbb{C}[s, s^{-1}] \oplus \mathbb{C}\mathbf{k},$$

equipped with the bracket relations

$$[xt^i \otimes s^m, yt^j \otimes s^n] = m \langle x, y
angle_{\mathfrak{h}} \delta_{m+n,0} \delta_{i,j} \mathbf{k}$$

・ 回 ト ・ ヨ ト ・ ヨ ト

• Affinize $\mathfrak{h}[t]$ as follows:

$$\widehat{\mathfrak{h}[t]} = \mathfrak{h}[t] \otimes \mathbb{C}[s, s^{-1}] \oplus \mathbb{C}\mathbf{k},$$

equipped with the bracket relations

$$[xt^i \otimes s^m, yt^j \otimes s^n] = m \langle x, y \rangle_{\mathfrak{h}} \delta_{m+n,0} \delta_{i,j} \mathbf{k}$$

$$M(I) = \operatorname{Ind}_{\widehat{\mathfrak{h}}[t]_{\leq 0}}^{\widehat{\mathfrak{h}}[t]}(\mathbb{C}\mathbf{1}) = S(\widehat{\mathfrak{h}}[t]_{+}) \otimes \mathbb{C}\mathbf{1},$$

where $\widehat{\mathfrak{h}[t]}_{\leq 0} := \mathfrak{h}[t] \otimes \mathbb{C}[s]$ annihilates **1** and **k** acts as a scalar multiplication by *I*.

・ 同 ト ・ ヨ ト ・ ヨ ト

• Affinize $\mathfrak{h}[t]$ as follows:

$$\widehat{\mathfrak{h}[t]} = \mathfrak{h}[t] \otimes \mathbb{C}[s, s^{-1}] \oplus \mathbb{C}\mathbf{k},$$

equipped with the bracket relations

$$[xt^i \otimes s^m, yt^j \otimes s^n] = m \langle x, y \rangle_{\mathfrak{h}} \delta_{m+n,0} \delta_{i,j} \mathbf{k}$$

$$M(I) = \operatorname{Ind}_{\widehat{\mathfrak{h}}[t]_{\leq 0}}^{\widehat{\mathfrak{h}}[t]}(\mathbb{C}\mathbf{1}) = S(\widehat{\mathfrak{h}}[t]_{+}) \otimes \mathbb{C}\mathbf{1},$$

where $\widehat{\mathfrak{h}[t]}_{\leq 0} := \mathfrak{h}[t] \otimes \mathbb{C}[s]$ annihilates **1** and **k** acts as a scalar multiplication by *l*.

M(I) has a natural vertex algebra structure with operators given in the same way as the Heisenberg Vertex operator algebra.

Modules for M(I)

Jinwei Yang Vertex algebra associated to abelian current Lie algebras

ヘロト ヘ回ト ヘヨト ヘヨト

We consider the induced module from the evaluation modules as follows:

$$W(\lambda, a, l) = \operatorname{Ind}_{\widehat{\mathfrak{h}[t]}_{\leq 0}}^{\widehat{\mathfrak{h}[t]}}(V(\lambda, a)) = S(\widehat{\mathfrak{h}[t]}_{+}) \otimes_{\mathbb{C}} V(\lambda, a),$$

where $\mathfrak{h}[t] \otimes s\mathbb{C}[s]$ annihilates $V(\lambda, a)$ and **k** acts as a scalar multiplication by *I*.

・聞き ・ヨキ ・ヨト

We consider the induced module from the evaluation modules as follows:

$$W(\lambda, a, l) = \operatorname{Ind}_{\widehat{\mathfrak{h}[t]}_{\leq 0}}^{\widehat{\mathfrak{h}[t]}}(V(\lambda, a)) = S(\widehat{\mathfrak{h}[t]}_{+}) \otimes_{\mathbb{C}} V(\lambda, a),$$

where $\mathfrak{h}[t] \otimes s\mathbb{C}[s]$ annihilates $V(\lambda, a)$ and **k** acts as a scalar multiplication by *l*.

2 We are mostly interested in the case when a = 0.

・ 同 ト ・ ヨ ト ・ ヨ ト

We consider the induced module from the evaluation modules as follows:

$$W(\lambda, a, l) = \operatorname{Ind}_{\widehat{\mathfrak{h}[t]}_{\leq 0}}^{\widehat{\mathfrak{h}[t]}}(V(\lambda, a)) = S(\widehat{\mathfrak{h}[t]}_{+}) \otimes_{\mathbb{C}} V(\lambda, a),$$

where $\mathfrak{h}[t] \otimes s\mathbb{C}[s]$ annihilates $V(\lambda, a)$ and **k** acts as a scalar multiplication by *l*.

- 2 We are mostly interested in the case when a = 0.
- We can also construct logarithmic modules for *M(I)* in a similar way.

・ 同 ト ・ ヨ ト ・ ヨ ト

Virasoro operators L(n)

Jinwei Yang Vertex algebra associated to abelian current Lie algebras

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

• There is no conformal element in M(I), but there are still Virasoro operators L(n) for $n \ge -1$.

イロト イポト イヨト イヨト

Virasoro operators L(n)

- There is no conformal element in M(I), but there are still Virasoro operators L(n) for $n \ge -1$.
- 2 Define

$$L(n) = \frac{1}{2I} \sum_{i=1}^{d} \sum_{j \in \mathbb{N}} \sum_{m \in \mathbb{Z}} {}^{\circ}_{\circ} (u^{(i)}t^{j})(n-m)(u^{(i)}t^{j})(m) {}^{\circ}_{\circ}$$

The operators L(n) are well-defined since for each $w \in W(\lambda, 0, l)$, L(n)w has only finitely many nonzero terms.

イロト イポト イヨト イヨト

Virasoro operators L(n)

- There is no conformal element in M(I), but there are still Virasoro operators L(n) for $n \ge -1$.
- 2 Define

$$L(n) = \frac{1}{2I} \sum_{i=1}^{d} \sum_{j \in \mathbb{N}} \sum_{m \in \mathbb{Z}} \mathop{\scriptstyle \circ}_{\circ} (u^{(i)} t^j) (n-m) (u^{(i)} t^j) (m) \mathop{\scriptstyle \circ}_{\circ}$$

The operators L(n) are well-defined since for each $w \in W(\lambda, 0, l)$, L(n)w has only finitely many nonzero terms.

• L(n) is also well-defined when |a| < 1.

ヘロト 人間 ト ヘヨト ヘヨト

Definition

A vertex algebra *V* is called quasi-conformal if it carries the operators L(n) for $n \ge -1$ such that for $m, n \ge -1$

$$[L(m), L(n)] = (m-n)L(m+n)$$

and for $v \in V$,

$$[L(n), Y(v, x)] = \sum_{m \ge -1}^{n} {\binom{n+1}{m+1}} x^{n-m} Y(L(m)v, x)$$

Theorem

The vertex algebra M(I) is quasi-conformal.

イロト イポト イヨト イヨト

Jinwei Yang Vertex algebra associated to abelian current Lie algebras

・ 回 ト ・ ヨ ト ・ ヨ ト

• We define an \mathbb{N} -grading for M(I) by

$$\mathbb{N}\text{-wt } x_1 t^{i_1}(-n_1)\cdots x_k t^{i_k}(-n_k)\mathbf{1} = i_1 + \cdots + i_k.$$

・ 回 ト ・ ヨ ト ・ ヨ ト

• We define an \mathbb{N} -grading for M(I) by

$$\mathbb{N}\text{-wt } x_1 t^{i_1}(-n_1)\cdots x_k t^{i_k}(-n_k)\mathbf{1} = i_1 + \cdots + i_k.$$

2 We define an \mathbb{N} -grading for $W(\lambda, a, l)$ by

$$\mathbb{N}\text{-wt } x_1 t^{i_1}(-n_1)\cdots x_k t^{i_k}(-n_k)v_{\lambda} = i_1 + \cdots + i_k,$$

▲ 伊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q ()

• We define an \mathbb{N} -grading for M(I) by

$$\mathbb{N}\text{-wt } x_1 t^{i_1}(-n_1)\cdots x_k t^{i_k}(-n_k)\mathbf{1} = i_1 + \cdots + i_k.$$

2 We define an \mathbb{N} -grading for $W(\lambda, a, l)$ by

$$\mathbb{N}\text{-wt } x_1 t^{i_1}(-n_1)\cdots x_k t^{i_k}(-n_k)v_{\lambda} = i_1 + \cdots + i_k,$$

It is routine to check that under this second grading, *M*(*I*) and *W*(λ, *a*, *I*) satisfying strongly gradedness restrictions defined before.

くぼう くほう くほう

Logarithmic intertwining operators

Definition

Let (W_1, Y_1) , (W_2, Y_2) and (W_3, Y_3) be logarithmic modules for a conformal (quasi-conformal) vertex algebra *V*. A logarithmic intertwining operator of type $\binom{W_3}{W_1 W_2}$ is a linear map

$$\mathcal{Y}(\cdot, x) \cdot : W_1 \otimes W_2 \to W_3[\log x]\{x\},$$

or equivalently,

$$w_{(1)} \otimes w_{(2)} \mapsto \mathcal{Y}(w_{(1)}, x) w_{(2)} = \sum_{n \in \mathbb{C}} \sum_{k \in \mathbb{N}} w_{(1)} \frac{\mathcal{Y}}{n; k} w_{(2)} x^{-n-1} (\log x)^k$$

for all $w_{(1)} \in W_1$ and $w_{(2)} \in W_2$, such that the following conditions are satisfied: the *lower truncation condition*: for any $w_{(1)} \in W_1$, $w_{(2)} \in W_2$ and $n \in \mathbb{C}$,

 $w_{(1)}_{n+m;k}^{\mathcal{Y}}w_{(2)} = 0$ for $m \in \mathbb{N}$ sufficiently large;

Logarithmic intertwining operators

Definition

the Jacobi identity:

$$x_0^{-1} \delta\left(\frac{x_1 - x_2}{x_0}\right) Y_3(v, x_1) \mathcal{Y}(w_{(1)}, x_2) w_{(2)}$$

- $x_0^{-1} \delta\left(\frac{x_2 - x_1}{-x_0}\right) \mathcal{Y}(w_{(1)}, x_2) Y_2(v, x_1) w_{(2)}$
= $x_2^{-1} \delta\left(\frac{x_1 - x_0}{x_2}\right) \mathcal{Y}(Y_1(v, x_0) w_{(1)}, x_2) w_{(2)}$

for $v \in V$, $w_{(1)} \in W_1$ and $w_{(2)} \in W_2$; the L(-1)-derivative property: for any $w_{(1)} \in W_1$,

$$\mathcal{Y}(L(-1)w_{(1)},x)=\frac{d}{dx}\mathcal{Y}(w_{(1)},x).$$

イロト イ押ト イヨト イヨトー

= 990

C_1 -cofiniteness condition with respect to \tilde{A}

Definition

Let $C_1(W)$ be the subspace of W spanned by elements of the form $u_{-1}w$ for

$$u \in V_+ = \prod_{n>0} V_{(n)}$$

and $w \in W$. The \tilde{A} -grading on W induces an \tilde{A} -grading on $W/C_1(W)$:

$$W/C_1(W) = \coprod_{eta \in ilde{\mathcal{A}}} (W/C_1(W))^{(eta)},$$

where

$$(W/C_1(W))^{(\beta)} = W^{(\beta)}/(C_1(W))^{(\beta)}$$

for $\beta \in \tilde{A}$. If dim $(W/C_1(W))^{(\beta)} < \infty$ for $\beta \in \tilde{A}$, we say that W is C_1 -cofinite with respect to \tilde{A} or W satisfies the C_1 -cofiniteness condition with respect to \tilde{A} .

Differential equations

Theorem

Let W_i for i = 0, ..., 3 be strongly \mathbb{N} -graded generalized M(I)-modules satisfying C_1 -cofiniteness condition with respect to \mathbb{N} . Then for any $w_i \in W_i$, there exist

$$a_k(z_1, z_2) \in \mathbb{C}[z_1^{\pm}, z_2^{\pm}, (z_1 - z_2)^{-1}]$$

for k = 1, ..., m such that for any M(I)-modules W_4 , and any logarithmic intertwining operators $\mathcal{Y}_1, \mathcal{Y}_2$ of types $\binom{W_0'}{W_1 W_4}, \binom{W_4}{W_2 W_3}$, the series

$$\langle w'_{(0)}, \mathcal{Y}_1(w_{(1)}, z_1) \mathcal{Y}_2(w_{(2)}, z_2) w_{(3)} \rangle$$

satisfies the system of differential equations

$$\frac{\partial^m \varphi}{\partial z_1^m} + a_1(z_1, z_2) \frac{\partial^{m-1} \varphi}{\partial z_1^{m-1}} + \cdots + a_m(z_1, z_2) \varphi = 0,$$

Corollary

The M(I)-modules of the form $W(\lambda, a, I)$ is C_1 -cofinite with respect to \mathbb{N} . Therefore, matrix elements of products and iterates of intertwining operators among triples of modules of the form $W(\lambda, a, I)$ satisfy the differential equations above.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの