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Definition of vertex algebras

A conformal vertex algebra is a Z-graded vector space

V =
∐
n∈Z

V(n)

equipped with a linear map

Y (·, x) : V → Hom(V ,V ((x)))

v 7→ Y (v , x) =
∑
n∈Z

vnx−n−1 (where vn ∈ EndV )

and equipped with two distinguished vectors 1 ∈ V(0), called
vacuum vector, such that for v ∈ V , the following axioms hold:

1 Y (1, x) = idV ;
2 Y (v , x)1 ∈ V [[x ]], and Y (v , x)1|x=0 = v−11 = v ;
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Definition of vertex algebras (continued)

and ω ∈ V(2), called conformal vector, such that the following
properties hold:

1 The Virasoro algebra relations

[L(m),L(n)] = (m − n)L(m + n) +
m3 −m

12
δm+n,0cV ,

where L(n) = ωn+1, and cv ∈ C, called rank of V .
2 Y (L(−1)v , x) = d

dx Y (v , x), for v ∈ V .
3 L(0)v = nv , for v ∈ V(n).

and for u, v ∈ V , the Jacobi identity (the main axiom) holds:

x−1
0 δ(

x1 − x2

x0
)Y (u, x1)Y (v , x2)− x−1

0 δ(
x2 − x1

−x0
)Y (v , x2)Y (u, x1)

= x−1
2 δ(

x1 − x0

x2
)Y (Y (u, x0)v , x2),

where δ(x) =
∑

n∈Z xn.
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Vertex operator algebras

Definition
A vertex operator algebra is a conformal vertex algebra

V =
∐
n∈Z

V(n)

such that
dim V(n) <∞ for n ∈ Z,

V(n) = 0 for n sufficiently negative

(grading restriction property).
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Strongly graded vertex algebras

Definition
Let A be an abelian group. A conformal vertex algebra

V =
∐
n∈Z

V(n)

is said to be strongly graded with respect to A (or strongly
A-graded) if it is equipped with a second grading by A,

V =
∐
α∈A

V (α),

such that the grading restriction conditions hold:
1 dim V (α)

(n) <∞

2 V (α)
(n) = 0 for n sufficiently negative.

Jinwei Yang Vertex algebra associated to abelian current Lie algebras



Examples: Vertex algebras associated with even
lattices

Let L be an even lattice not necessarily positive definite. Let
h = L⊗Z C. Then we form a Heisenberg algebra

ĥZ =
∐

n∈Z, n 6=0

h⊗ tn ⊕ Cc.

Let (L̂,̄ ) be a central extension of L by a finite cyclic group
〈κ | κs = 1〉. Let C{L} be a certain induced L̂-module
isomorphic to C[L]. Then

VL = S(ĥ−Z )⊗ C{L}
has a natural structure of conformal vertex algebra. For α ∈ L,
choose an a ∈ L̂ such that ā = α. Define ι(a) = a⊗ 1 ∈ C{L}
and

V (α)
L = S(ĥ−Z )⊗ Cι(a).

Then VL is equipped with a natural second grading given by L
itself.
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Strongly graded modules for strongly graded vertex
algebras

Definition

Let Ã be an abelian group containing A. A V -module
W =

∐
n∈C W(n) is said to be strongly graded with respect to Ã

(or strongly Ã-graded) if it is equipped with a second grading by
Ã,

W =
∐
β∈Ã

W (β)

such that the grading restriction conditions hold:
1 dim W (β)

(n) <∞

2 W (β)
(n+k) = 0 for k ∈ Z sufficiently negative.
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Motivation
Logarithmic tensor category

1 In a series of papers [HLZ1]-[HLZ8], Huang, Lepowsky and
Zhang developed the theory of logarithmic tensor
categories for logarithmic modules for strongly graded
vertex algebras.

2 So far, the only source of strongly graded vertex algebras
and their modules comes from VL, where L is an even
lattice.

3 We construct a new family of strongly graded vertex
algebras along with a natural logarithmic module category.

4 We show some properties needed in
Huang-Lepowsky-Zhang’s logaritmic tensor category
theory and expect that there is a natural logarithmic tensor
category structure on the module category.
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Motivation
Polynomial current algebra of Lie algebras

Current algebra of a finite dimensional Lie algebra has been
studied in [CG1], [CG2] et al. Current Lie algebra is the
standard parabolic subalgebra of an affine Lie algebra and its
representation has broad applications.

Definition
Let C[t ] be the ring of polynomials in an indeterminate t . The
current algebra g[t ] of a Lie algebra g is the Lie algebra g⊗C[t ],
where the Lie bracket is defined by

[x ⊗ f , y ⊗ g]g[t] = [x , y ]g ⊗ fg, x , y ∈ g, f ,g ∈ C[t ].
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Abelian current Lie algebra h[t ]

1 Current Lie algebra h[t ] = h⊗ C[t ] is an abelian Lie
algebra.

2 h[t ] has an invariant symmetric bilinear form induced from
〈·, ·〉h:

〈xtm, ytn〉h[t] = δm,n〈x , y〉h, x , y ∈ h, m,n ∈ N.

3 For every λ ∈ h, denote by Cλ the one-dimensional
h-module with h ∈ h acting as the scalar 〈λ,h〉h. For every
a ∈ C we define an h[t ]-module V (λ,a) = Cλ as a vector
space with action given by

(hf ) · v = f (a)λ(h)v , h ∈ h, f ∈ C[t ], v ∈ Cλ.
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Vertex algebra associated to h[t ]

1 Affinize h[t ] as follows:

ĥ[t ] = h[t ]⊗ C[s, s−1]⊕ Ck,

equipped with the bracket relations

[xt i ⊗ sm, yt j ⊗ sn] = m〈x , y〉hδm+n,0δi,jk

2 Set
M(l) = Indĥ[t]

ĥ[t]≤0
(C1) = S(ĥ[t ]+)⊗ C1,

where ĥ[t ]≤0 := h[t ]⊗ C[s] annihilates 1 and k acts as a
scalar multiplication by l .

3 M(l) has a natural vertex algebra structure with operators
given in the same way as the Heisenberg Vertex operator
algebra.
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ĥ[t ] = h[t ]⊗ C[s, s−1]⊕ Ck,

equipped with the bracket relations

[xt i ⊗ sm, yt j ⊗ sn] = m〈x , y〉hδm+n,0δi,jk

2 Set
M(l) = Indĥ[t]
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Modules for M(l)

1 We consider the induced module from the evaluation
modules as follows:

W (λ,a, l) = Indĥ[t]
ĥ[t]≤0

(V (λ,a)) = S(ĥ[t ]+)⊗C V (λ,a),

where h[t ]⊗ sC[s] annihilates V (λ,a) and k acts as a
scalar multiplication by l .

2 We are mostly interested in the case when a = 0.
3 We can also construct logarithmic modules for M(l) in a

similar way.
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ĥ[t]≤0
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Virasoro operators L(n)

1 There is no conformal element in M(l), but there are still
Virasoro operators L(n) for n ≥ −1.

2 Define

L(n) =
1
2l

d∑
i=1

∑
j∈N

∑
m∈Z

◦
◦(u

(i)t j)(n −m)(u(i)t j)(m) ◦◦

The operators L(n) are well-defined since for each
w ∈W (λ,0, l), L(n)w has only finitely many nonzero
terms.

3 L(n) is also well-defined when |a| < 1.

Jinwei Yang Vertex algebra associated to abelian current Lie algebras



Virasoro operators L(n)

1 There is no conformal element in M(l), but there are still
Virasoro operators L(n) for n ≥ −1.

2 Define

L(n) =
1
2l

d∑
i=1

∑
j∈N

∑
m∈Z

◦
◦(u

(i)t j)(n −m)(u(i)t j)(m) ◦◦

The operators L(n) are well-defined since for each
w ∈W (λ,0, l), L(n)w has only finitely many nonzero
terms.

3 L(n) is also well-defined when |a| < 1.

Jinwei Yang Vertex algebra associated to abelian current Lie algebras



Virasoro operators L(n)

1 There is no conformal element in M(l), but there are still
Virasoro operators L(n) for n ≥ −1.

2 Define

L(n) =
1
2l

d∑
i=1

∑
j∈N

∑
m∈Z

◦
◦(u

(i)t j)(n −m)(u(i)t j)(m) ◦◦

The operators L(n) are well-defined since for each
w ∈W (λ,0, l), L(n)w has only finitely many nonzero
terms.

3 L(n) is also well-defined when |a| < 1.

Jinwei Yang Vertex algebra associated to abelian current Lie algebras



Virasoro operators L(n)

1 There is no conformal element in M(l), but there are still
Virasoro operators L(n) for n ≥ −1.

2 Define

L(n) =
1
2l

d∑
i=1

∑
j∈N

∑
m∈Z

◦
◦(u

(i)t j)(n −m)(u(i)t j)(m) ◦◦

The operators L(n) are well-defined since for each
w ∈W (λ,0, l), L(n)w has only finitely many nonzero
terms.

3 L(n) is also well-defined when |a| < 1.

Jinwei Yang Vertex algebra associated to abelian current Lie algebras



Quasi-conformal structure on M(l)

Definition
A vertex algebra V is called quasi-conformal if it carries the
operators L(n) for n ≥ −1 such that for m,n ≥ −1

[L(m),L(n)] = (m − n)L(m + n)

and for v ∈ V ,

[L(n),Y (v , x)] =
n∑

m≥−1

(
n + 1
m + 1

)
xn−mY (L(m)v , x).

Theorem
The vertex algebra M(l) is quasi-conformal.
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Strongly gradedness structure on M(l) and W (λ,a, l)

1 We define an N-grading for M(l) by

N-wt x1t i1(−n1) · · · xk t ik (−nk )1 = i1 + · · ·+ ik .

2 We define an N-grading for W (λ,a, l) by

N-wt x1t i1(−n1) · · · xk t ik (−nk )vλ = i1 + · · ·+ ik ,

3 It is routine to check that under this second grading, M(l)
and W (λ,a, l) satisfying strongly gradedness restrictions
defined before.
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Logarithmic intertwining operators

Definition
Let (W1,Y1), (W2,Y2) and (W3,Y3) be logarithmic modules for
a conformal (quasi-conformal) vertex algebra V . A logarithmic
intertwining operator of type

( W3
W1 W2

)
is a linear map

Y(·, x)· : W1 ⊗W2 →W3[log x ]{x},

or equivalently,

w(1) ⊗ w(2) 7→ Y(w(1), x)w(2) =
∑
n∈C

∑
k∈N

w(1)
Y
n; kw(2)x−n−1(log x)k

for all w(1) ∈W1 and w(2) ∈W2, such that the following
conditions are satisfied: the lower truncation condition: for any
w(1) ∈W1, w(2) ∈W2 and n ∈ C,

w(1)
Y
n+m; kw(2) = 0 for m ∈ N sufficiently large;
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Logarithmic intertwining operators

Definition
the Jacobi identity:

x−1
0 δ

(
x1 − x2

x0

)
Y3(v , x1)Y(w(1), x2)w(2)

− x−1
0 δ

(
x2 − x1

−x0

)
Y(w(1), x2)Y2(v , x1)w(2)

= x−1
2 δ

(
x1 − x0

x2

)
Y(Y1(v , x0)w(1), x2)w(2)

for v ∈ V , w(1) ∈W1 and w(2) ∈W2; the L(−1)-derivative
property: for any w(1) ∈W1,

Y(L(−1)w(1), x) =
d
dx
Y(w(1), x).
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C1-cofiniteness condition with respect to Ã

Definition
Let C1(W ) be the subspace of W spanned by elements of the
form u−1w for

u ∈ V+ =
∐
n>0

V(n)

and w ∈W . The Ã-grading on W induces an Ã-grading on
W/C1(W ):

W/C1(W ) =
∐
β∈Ã

(W/C1(W ))(β),

where
(W/C1(W ))(β) = W (β)/(C1(W ))(β)

for β ∈ Ã. If dim (W/C1(W ))(β) <∞ for β ∈ Ã, we say that W
is C1-cofinite with respect to Ã or W satisfies the
C1-cofiniteness condition with respect to Ã.
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Differential equations

Theorem
Let Wi for i = 0, . . . ,3 be strongly N-graded generalized
M(l)-modules satisfying C1-cofiniteness condition with respect
to N. Then for any wi ∈Wi , there exist

ak (z1, z2) ∈ C[z±1 , z
±
2 , (z1 − z2)−1]

for k = 1, . . . ,m such that for any M(l)-modules W4, and any
logarithmic intertwining operators Y1,Y2 of types( W ′0

W1 W4

)
,
( W4

W2 W3

)
, the series

〈w ′(0),Y1(w(1), z1)Y2(w(2), z2)w(3)〉

satisfies the system of differential equations

∂mϕ

∂zm
1

+ a1(z1, z2)
∂m−1ϕ

∂zm−1
1

+ · · ·+ am(z1, z2)ϕ = 0,

in the region |z1| > |z2| > 0.
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Applications to W (λ,a, l)

Corollary

The M(l)-modules of the form W (λ,a, l) is C1-cofinite with
respect to N. Therefore, matrix elements of products and
iterates of intertwining operators among triples of modules of
the form W (λ,a, l) satisfy the differential equations above.
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